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Stochastic resonance using noise generated by a neural network
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We study the phenomenon of stochastic resonance when the noise is generated by a network of integrate-
and-fire neurons. A network with two populations of neurdnee excitatory and one inhibitoryand a
dispersion of intrinsic firing rates can display a great amount of variability and its output can be used to
improve the signal-to-noise ratio of another neuron that is receiving a subthreshold signal. We compare the
performance of this system to that of a system using white noise with different distributions. We find network
parameters for which the performance is similar to that of a system receiving white noise. In other cases, when
the network output displays an oscillatory component, the signal-to-noise ratio has several peaks, We also
analyze the relation between the synchrony of the network and the signal-to-noise ratio.
[S1063-651%99)11502-2

PACS numbds): 87.10+e, 05.40.Ca, 02.50.Fz

I. INTRODUCTION phenomenon of SR when the output of the network is used as
the noisy part of the input. To do this we simulate an
Stochastic resonancéSR) is a phenomenon first de- integrate-and-fir¢lF) network with two populations of neu-
scribed in the context of bistable systems. Such a systef®ns (one excitatory and one inhibitoryand a dispersion of
upon receiving a small periodic signal will be always trappedntrinsic firing rates. This k!nq of network is aple_ to generate
in one of the minima if the signal is not strong enough to@n irregular pattern of activity, the characteristics of which
overcome the potential barrier. On the other hand, if a noisgan be controlled by changing the internal coupling con-
input is also present the passage will be facilitated. Thistants. The paper is organized in the following way: in the
gives rise to the apparently paradoxical effect that signal dedext section we introduce the model for the network and the
tection can be facilitated by a suitable level of noise. This target” neuron that receives a periodic signal. In Sec. Ili
idea has been applied to explain the recurrence of Earth’s ic#€ introduce the parameters that characterize the dynamical
ages[1,2], and later applied to a variety of systems such astate of the network and show the simulation results. We also
electronic circuits, lasers, superconducting devices, singléompare these results with simulations that use white noise.
potential wells, individual neurons, and neural networksln the last section we discuss the results.
[3-8].
The phenomenon has obvious implications for informa-
tion processing in the nervous system, as it could enhance Il. MODEL
signal detection. It has been experimentally observed in sev- Tha model has two parts. The first is a networkNofF

eral systems, such as mechanoreceptive neurons in the Crays rons that generate the noisy input for the additional target

fish[3,9], rat skin[10], and neurons in mammal brafil].  ne\ron that also receives a subthreshold periodic signal. The
One of the most interesting features of these experiments iSonyvork hasN, excitatory neurons andl; inhibitory neu-
I

that even when there is nexternalnoise the system can ,nq The subthreshold dynamics of neujdn the excita-
detect the periodic sign&hlthough the introduction of exter- tory population is given by15]

nal noise can still improve the performanc@&his suggests
that there might be aimternal source of noise. Brain activity

displays a great amount of variability, although its origins dv,

are not completely cledtl2]. This variability could be used Tt = ViOH1FGed D[ Ve Vj(1)]

as the source of noise for implementing SR. A first analysis

of this situation was carried out [13] where the output of a +Gie(D[Vi—V;(1)], 1)

network of Hindmarsh-Rose neurons was used to enhance a
weak periodic signal. There it was shown that, effectively,
noise generated by a network can improve signal detectioriwhere V;(t) is the membrane potentiat, is the membrane
Improving the performance of biological systems imple-time constant]; is the bias current that controls the firing
menting SR has proved to be quite difficult. For instance, imate in the absence of interaction, avidandV; are, respec-
the crayfish it has been shown that raising the temperaturively, the reversal potential of the excitatory and inhibitory
fails to show optimization as a function of the noise levelinteractions. The synaptic conductan¢gs(t) andG;, rep-
[14]. Noise generated by a network has the potential advarresent the interactions whithin the excitatory population and
tage that its properties could be easily modified by tuning thérom the inhibitory population to the excitatory one, respec-
network parameters. In this work we address the question dively. Similarly the dynamics of a neuron in the inhibitory
the relation between the dynamical state of a network and thpopulation is given by
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=1 msecs,=7 msec. The bias currents were chosen in

Td—tJ == V() +1j+ Gei(D[Ve—Vj(1)] such a way that in the absence of interaction each population
had a uniform distribution of firing rates in the interdl,
+Gi(D[Vi—=V;(D)], (20 —6,02f,+6./2](a=e,i). The time step was ét

=0.1 msec and the network had 8000 excitatory neurons
whereG;;(t) and G represent the interactions whithin the and 8000 inhibitory neurons. Comparisons with different
inhibitory population and from the excitatory population to sjzes were performed in order to check finite size effects.
the inhibitory one, respectively. W;(t) reaches the thresh- The dynamics was simulated during 8 sec. for each set of
old value § then it is reset instantly to 0. The output of the parameters investigated. In all of the figures the error bars
neuronj during a given time intervalt,,t,] is given by  represent an average over five realizations.
number of spikes during that interval, that will be denoted by The dynamics of the target neuron H) is solved si-
Oj(ty,t2). multaneously with the network dynamics and its output is
The evolution of the synaptic conductances is given by Fourier transformed in order to evaluate its power spectrum.
The value of the peak at the frequency of the periodic train is
Gt = %2 2 ga(t_tjspikes)’ 3) identified as t_he signaﬂi'and the_ background value is the
ajea ;Spikes noiseN. The signal-to-noise-ratiR is defined in the standard
. way:
wherea,b=e ori, F,, are the coupling constants, agg(t)
describes the time course of the interaction. We choose a R=10 |0910§- @)
difference of two exponentials: N

1 We now examine the relation between the signal-to-noise
ge(t) = — e[exp(—t/rﬁ)—exp(—tlr‘g)](t) (4) ratio and the dynamical state of the network. One of the most
T1— T2 important properties that characterizes the dynamical state of

the network is its synchrony strength. The synchrony can be
measured using the method developed[i#7-19. The
method is based on the idea that in a synchronous state the

[exp(—t/7h)—exp(—t/7,)]@(t), (5) fluctuations of the average membrane potential will be of the
same order as the fluctuations of the individual potentials,
while in an asynchronous state they will be much smaller if

where 7 and 75 represent the rise and decay time constantshe system is large. The average membrane potential at time

for the excitation,7; and 7, are the rise and decay time t for a system ofN neurons is

constants for the inhibition, an@ is the Heaviside function.

and

1
gl(t)= i

i
T1— Ty

N
The dynamics of the target neuron is given b 1
/ ’ anen AD= T2 V(1. ©
Vv Ni=1
Tar - VIO GOIVem V(Y] ®  is time fluctuations can be characterized by the variance
with a prescription for resetting identical to the one intro- An={(An(D)2)— (An(D))2. (10

duced above. The synaptic conductance is given by . ) ) ) ) )
This variance is normalized to the population averaged vari-

G(t):Wsignm; golt—t3ional ance of single cell athivity,
1

: A= 2 [V (V(1)7]. (12)

+Whoisedy X elt—t5P*eS. 7 NS e AR

jee t_spikes .
! The resulting synchrony parameter
Therefore the target neuron is receiving spikes from all the A
neurons in the excitatory population and an additional peri- x=lim =N (12)
odic spike train. The spike times in this train are given by N_e A

t$19"= KT, whereT is the period of the signal.
lies comprised between 0 and 1, and measures the degree of

coherence of the system in the infinite size limit. In particu-
lar, =1 if the system is totally synchroniz€de., V(t)

The network dynamics, Eq¢l), (2), and(3), was inte- =V(t) for all j] and xy=0 if the state of the system is asyn-
grated using a consistent second-order Runge-Kutta alg@hronous. This quantity can be evaluated independently for
rithm [16]. The membrane time constant was chosernras both populations, giving rise tg, for the excitatory neurons
=10 msec. The reversal potentials for excitation and inhi-and y; for the inhibitory ones.
bition areV,=30 mV andV;=—-10 mV, respectively. The Another important feature of the dynamical state is given
threshold is§=20 mV above rest. The synaptic time con- by the possible existence of oscillations. It is important to
stants are given by7{=1 msec, 75=3 msec, 7;  stress that the question of oscillations is not independent of

lll. SIMULATION RESULTS
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FIG. 1. Signal-to-noise ratio as a function of,y;sc for 6= 6;
=23,22,21,20,19 Hzfrom top to bottom. The value of the cou- FIG. 2. Probability density function of the excitatory subnet-
pling constants i$..=11 msec, F¢;=10 msec, F.=11 msec, work activity O. The couplings are the same as in the previous
andF; =10 msec. The average firing rate of the excitatory popu-figure and the disorder i§,= ;=20 Hz.
lation is approximately 54 Hz and the synchrony paramgteakes
the values 0.104, 0.124, 0.132, 0.136, and 0.137. function of Fig. 2. Both instances of uncorrelated noise show
a very similar behavior, and one which is very different from
tge noise generated by a network.

This result confirms the relevance of time correlations for
stochastic resonance. In our case these temporal correlations
constant input can have only two possible states: quiescent | € generated b_y a synchronized quaslper|od|c component in

the network activity, as can be seen in one example of the

the input is below threshold or periodic oscillations if it is autocorrelation function of the network activifsee Ei
above threshold. Therefore a nonzero degree of coherencejf%J : . . . 9-
a)]. By analyzing different network sizes and simulations

necessary to observe n(_)noscillatory behavior. This is_n_ot thﬁmes we have checked that the peaks in the autocorrelation
case for the model studied [A3], where a neuron receiving %nction are neither a finite size effect nor a transient effect.

the synchrony. In an asynchronous state every neuron of
large system receives an input that is constant in fiopeto
corrections of order 3/N). An IF neuron that receives a

a constant input can display chaotic behavior. On the oth he power spectrum of the target neuron activity is shown in
hand, when there is certain degree of coherence it is sti P P 9 y

possible to have oscillations, in particular, synchronized os; ig. 5@ for the same set of parameters. We can apprguate
cillations, besides the chaotic states. how clearly coherent peaks with the frequency of the signal

The synchrony strength depends on all the parameters (z)afnd its harmonics emerge out of the broadband noise back-

. L . ground.
TES P;gorgfgsgg;ggSéfsgﬁggtlzggeacggﬂggi’ﬁ;’;r%;ﬁeﬂr For different network parameters the signal-to-noise ratio

case in which the relation is simpler is obtained by keepinqgan be improved. We have changed the coupling parameters

all the parameters constant except for the dispersion of theab n order to find a state with Ie_ss OSC'"at'.OnS m_the mean
firing rates s, and & . In this case the synchrony is a mo- activity. In Fig. 6 we show the signal-to-noise ratio and its
notonously decreasing function of the dispersions. In Fig. 1
we show the signal-to-noise ratio as a functionvafy;se I
for different values of the dispersions,= §;=23,22,21, s
20,19 Hz. The strength of periodic signal was kept fixed at
Wsignai=50 msec. We can see that the signal-to-noise ratio
is adecreasingunction of the synchrony. Another interest-
ing feature is the existence of multiple peaks in the signal-&
to-noise ratio. The existence of multiple peaks has been re; 10f
ported previously[20]. They are due to the presence of
correlations in the noisy part of the input. In order to confirm
this point in the present case we evaluate the probability
density function of the network activity and generate a noise

input with the same probability density function but without 0 ! . L . ! . ! :
100 200 300 400 500

d

temporal correlations. In Fig. 2 we can see the probability (msec)
density function of the network activity fof,= 8,=20 Hz Pnae (TISEC
where the network activity at timé is defined byO(t) FIG. 3. Signal-to-noise ratio as a function f,o;se. Squares:

=(1Ne)ZjO(t,t+ot). Using this density function t0 noise generated by a network S4=8=20 Hz, F,
generate uncorrelated noise as input, the resulting signal-ta=11 msec, F,;=10 msec, Fj,=11 msec, andF;; =10 msec).
noise ratio is shown in Fig. 3. In the same figure we alsocrosses: white noise with the distribution of Fig. 2. Triangles:
show the result of using Gaussian white noise with a meamGaussian white noise, with the mean value and dispersion of the
value and a dispersion obtained from the probability densityrobability density function of Fig. 2.
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FIG. 4. Autocorrelation of the network activitp(t). (a) e
=8;=20 Hz, Fe.=11 msec,F=10 msec,Fj,=11 msec, and FIG. 5. Power spectrum of the target neuron activity. The peri-
Fii=10 msec.(b) de= ;=18 Hz, F,,=20 msec,F¢;=22 msec, odic signal has a frequency of 40 H@) 8.=5=20 Hz, Fe,
Fie=22 msec, andr;; =22 msec. =11 msec, F,;=10 msec, Fi;=11 msec, andF;; =10 msec

(b) 65.=6;=18 Hz, F..=20 msec,F,;=22 msec,F;.=22 msec,

comparison with noise generated with the probability densiy2"d i =22 msec.

function of the network activity but without temporal corre-
lations and with white Gaussian noise. The autocorrelation i
shown in Fig. 4b) and the power spectrum of the target
neuron in Fig. B). Although the autocorrelation is not com-
pletely flat it does not display such a strong long-term oscil- IV. DISCUSSION
latory component as in the previous case. This flatter spec-

trum generates a signal-to-noise ratio very similar to those of In this work we have analyzed the phenomenon of SR
9 9 y when the noise is generated by a network of interconnected

white noise. It is important to note that it is not necessary '9F heurons. Although we have not performed an exhaustive

fine tune all of the couplings to obtain this result. A Cha”geanalysis of the network parameter space we can conclude

in one of them can be compensated by a change of the otlir4t the temporal correlations of the output are a very impor-
ers, as long as the modification is not too laf@@proxi-  tant aspect of the dynamical state. This is demonstrated by
mately 20%. the fact that using white noise with the same probability
In the simulations performed to obtain Figs. 1, 3, and 6density function of the noise source but without temporal
the firing rate of the target neuron is a monotonically increascorrelations we obtain very different values of the signal-to-
ing function of the noise strengthy,,ise. In each case, its noise ratio. Moreover, white noise eliminates multiple peaks
maximum value was chosen in such a way that the firing ratén the signal-to-noise ratio as a function of noise intensity
of the target neuron reached a maximum value of about 30(ee Fig. 3. Multiple peaks have also been observedaa],
Hz. We found that the peak of the signal-to-noise ratio isbut in this case they are not generated by temporal correla-
reached for a firing rate of about 50—100 tdzsimilar value  tions in the noise, but by a scaling relation in the dynamical
was found for the most sensitive range for signal transducequations. Note that in this case the peaks appear evenly
tion in a different mode[21]). It is remarkable that the rate separated when plotted as a function of the logarithm of the
of decay of the signal-to-noise ratio is quite slow, especiallynoise intensity, while in our case the signal-to-noise ratio is
in the case of Fig. 5, where in the whole rangewf;s.from  plotted on a linear scale of the noise intensity. The influence
200 to 600 msec, the firing rates changes by a factor of 5 buif temporal correlations on SR has also been analyzed in

éhe signal-to-noise ratio decreases by less than 10%. This
indicates that there is no need of fine tuning foy,;se.



PRE 59 STOCHASTIC RESONANCE USING NOISE GENERATE .. 3343

by inertia, but it was never found the appearence of multiple
peaks in the curve SR as a function of noise strength.
We have also observed that increasing the strength of syn-
chrony by decreasing the dispersion of intrinsic frequencies
leads to a decreasing signal-to-noise ratio. The reason for this
behavior is that as synchrony increases the output becomes
concentrated during short time intervals. Inside these inter-
vals the noisy input is very strong and the output will be only
weakly correlated with the signal while outside the intervals
the signal is unable to generate any output.
These results suggest that the network parameters can be
_ . _ ' . ' chosen in such a way that the detectability of weak signals is
‘o0 200 30 a0 swo o  optimal. This will happen when the temporal correlations are
w, . (msec) small and the synchrony is not too strong. We expect that the

relation between the dynamical states and the stochastic reso-

FIG. 6. Signal-to-noise ratio as a function wf,ise- Squares:  nance must be qualitatively valid for models different from
noise generated by a networl§(= 6,=18 Hz, F..=20 msecF.;  |F (for instance conductance based mopdlscause, as it
=22 msecFi.=22, msec, and;; =22 mseg. The average firing \was shown in20] in a simple case, the effect of the corre-
rate and synchrony paramegefor the excitatory(inhibitory) popu-  |ations in the noisy part of the input can be taken into ac-

lation are 28 HA40 H2) and 0.07(0.04. Crosses: white noise with - ¢oynt py using a probabilistic description of the system, that
the distribution of output network activity corresponding to the is independent on the details of the dynamics
same parameters. Triangles: Gaussian white noise, with the mean '

value and dispersion of the probability density function of the cor-
responding output activity. ACKNOWLEDGMENTS
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