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Stochastic resonance using noise generated by a neural network

G. Mato
Comisión Nacional de Energı´a Atómica and CONICET, Centro Ato´mico Bariloche and Instituto Balseiro (CNEA and UNC),

8400 San Carlos de Bariloche (RN), Argentina
~Received 25 August 1998; revised manuscript received 9 October 1998!

We study the phenomenon of stochastic resonance when the noise is generated by a network of integrate-
and-fire neurons. A network with two populations of neurons~one excitatory and one inhibitory! and a
dispersion of intrinsic firing rates can display a great amount of variability and its output can be used to
improve the signal-to-noise ratio of another neuron that is receiving a subthreshold signal. We compare the
performance of this system to that of a system using white noise with different distributions. We find network
parameters for which the performance is similar to that of a system receiving white noise. In other cases, when
the network output displays an oscillatory component, the signal-to-noise ratio has several peaks, We also
analyze the relation between the synchrony of the network and the signal-to-noise ratio.
@S1063-651X~99!11502-2#

PACS number~s!: 87.10.1e, 05.40.Ca, 02.50.Fz
-
te
e
to
is
h
d
hi

i
a
g

rk

a
n
e

cr

ts
n
-

ns

s

ce
ly
io
le
, i
tu
e
a
th
n
th

d as
an
-

te
ch
n-
he
the
III
ical
lso
ise.

rget
The

g

ry

nd
c-
y

I. INTRODUCTION

Stochastic resonance~SR! is a phenomenon first de
scribed in the context of bistable systems. Such a sys
upon receiving a small periodic signal will be always trapp
in one of the minima if the signal is not strong enough
overcome the potential barrier. On the other hand, if a no
input is also present the passage will be facilitated. T
gives rise to the apparently paradoxical effect that signal
tection can be facilitated by a suitable level of noise. T
idea has been applied to explain the recurrence of Earth’s
ages@1,2#, and later applied to a variety of systems such
electronic circuits, lasers, superconducting devices, sin
potential wells, individual neurons, and neural netwo
@3–8#.

The phenomenon has obvious implications for inform
tion processing in the nervous system, as it could enha
signal detection. It has been experimentally observed in s
eral systems, such as mechanoreceptive neurons in the
fish @3,9#, rat skin@10#, and neurons in mammal brain@11#.
One of the most interesting features of these experimen
that even when there is noexternal noise the system ca
detect the periodic signal~although the introduction of exter
nal noise can still improve the performance!. This suggests
that there might be aninternal source of noise. Brain activity
displays a great amount of variability, although its origi
are not completely clear@12#. This variability could be used
as the source of noise for implementing SR. A first analy
of this situation was carried out in@13# where the output of a
network of Hindmarsh-Rose neurons was used to enhan
weak periodic signal. There it was shown that, effective
noise generated by a network can improve signal detect

Improving the performance of biological systems imp
menting SR has proved to be quite difficult. For instance
the crayfish it has been shown that raising the tempera
fails to show optimization as a function of the noise lev
@14#. Noise generated by a network has the potential adv
tage that its properties could be easily modified by tuning
network parameters. In this work we address the questio
the relation between the dynamical state of a network and
PRE 591063-651X/99/59~3!/3339~5!/$15.00
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phenomenon of SR when the output of the network is use
the noisy part of the input. To do this we simulate
integrate-and-fire~IF! network with two populations of neu
rons ~one excitatory and one inhibitory! and a dispersion of
intrinsic firing rates. This kind of network is able to genera
an irregular pattern of activity, the characteristics of whi
can be controlled by changing the internal coupling co
stants. The paper is organized in the following way: in t
next section we introduce the model for the network and
‘‘target’’ neuron that receives a periodic signal. In Sec.
we introduce the parameters that characterize the dynam
state of the network and show the simulation results. We a
compare these results with simulations that use white no
In the last section we discuss the results.

II. MODEL

The model has two parts. The first is a network ofN IF
neurons that generate the noisy input for the additional ta
neuron that also receives a subthreshold periodic signal.
network hasNe excitatory neurons andNi inhibitory neu-
rons. The subthreshold dynamics of neuronj in the excita-
tory population is given by@15#

t
dVj

dt
52Vj~ t !1I j1Gee~ t !@Ve2Vj~ t !#

1Gie~ t !@Vi2Vj~ t !#, ~1!

whereVj (t) is the membrane potential,t is the membrane
time constant,I j is the bias current that controls the firin
rate in the absence of interaction, andVe andVi are, respec-
tively, the reversal potential of the excitatory and inhibito
interactions. The synaptic conductancesGee(t) andGie rep-
resent the interactions whithin the excitatory population a
from the inhibitory population to the excitatory one, respe
tively. Similarly the dynamics of a neuron in the inhibitor
population is given by
3339 ©1999 The American Physical Society
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t
dVj

dt
52Vj~ t !1I j1Gei~ t !@Ve2Vj~ t !#

1Gii ~ t !@Vi2Vj~ t !#, ~2!

whereGii (t) and Gei represent the interactions whithin th
inhibitory population and from the excitatory population
the inhibitory one, respectively. IfVj (t) reaches the thresh
old valueu then it is reset instantly to 0. The output of th
neuron j during a given time interval@ t1 ,t2# is given by
number of spikes during that interval, that will be denoted
Oj (t1 ,t2).

The evolution of the synaptic conductances is given b

Gab~ t !5
Fab

Na
(
j Pa

(
t j
spikes

ga~ t2t j
spikes!, ~3!

wherea,b5e or i, Fab are the coupling constants, andga(t)
describes the time course of the interaction. We choos
difference of two exponentials:

ge~ t !5
1

t1
e2t2

e
@exp~2t/t1

e!2exp~2t/t2
e!#Q~ t ! ~4!

and

gi~ t !5
1

t1
i 2t2

i
@exp~2t/t1

i !2exp~2t/t2
i !#Q~ t !, ~5!

wheret1
e andt2

e represent the rise and decay time consta
for the excitation,t1

i and t2
i are the rise and decay tim

constants for the inhibition, andQ is the Heaviside function
The dynamics of the target neuron is given by

t
dV

dt
52V~ t !1G~ t !@Ve2V~ t !# ~6!

with a prescription for resetting identical to the one intr
duced above. The synaptic conductance is given by

G~ t !5wsignal(
k

ge~ t2tk
signal!

1wnoise(
j Pe

(
t j
spikes

ge~ t2t j
spikes!. ~7!

Therefore the target neuron is receiving spikes from all
neurons in the excitatory population and an additional p
odic spike train. The spike times in this train are given
tk
signal5kT, whereT is the period of the signal.

III. SIMULATION RESULTS

The network dynamics, Eqs.~1!, ~2!, and ~3!, was inte-
grated using a consistent second-order Runge-Kutta a
rithm @16#. The membrane time constant was chosen at
510 msec. The reversal potentials for excitation and in
bition areVe530 mV andVi5210 mV, respectively. The
threshold isu520 mV above rest. The synaptic time co
stants are given by t1

e51 msec, t2
e53 msec, t1

i

y

a

ts

e
i-

o-

i-

51 msec,t2
i 57 msec. The bias currentsI j were chosen in

such a way that in the absence of interaction each popula
had a uniform distribution of firing rates in the interval@ f a
2da/2,f a1da/2#(a5e,i ). The time step was dt
50.1 msec and the network had 8000 excitatory neur
and 8000 inhibitory neurons. Comparisons with differe
sizes were performed in order to check finite size effec
The dynamics was simulated during 8 sec. for each se
parameters investigated. In all of the figures the error b
represent an average over five realizations.

The dynamics of the target neuron Eq.~6! is solved si-
multaneously with the network dynamics and its output
Fourier transformed in order to evaluate its power spectru
The value of the peak at the frequency of the periodic train
identified as the signalS, and the background value is th
noiseN. The signal-to-noise-ratioR is defined in the standard
way:

R510 log10

S

N
. ~8!

We now examine the relation between the signal-to-no
ratio and the dynamical state of the network. One of the m
important properties that characterizes the dynamical stat
the network is its synchrony strength. The synchrony can
measured using the method developed in@17–19#. The
method is based on the idea that in a synchronous state
fluctuations of the average membrane potential will be of
same order as the fluctuations of the individual potentia
while in an asynchronous state they will be much smalle
the system is large. The average membrane potential at
t for a system ofN neurons is

AN~ t !5
1

N(
j 51

N

Vj~ t !. ~9!

Its time fluctuations can be characterized by the variance

DN5^AN~ t !2& t2^AN~ t !& t
2 . ~10!

This variance is normalized to the population averaged v
ance of single cell activity,

D5
1

N (
j 51

N

@^Vj~ t !2& t2^Vj~ t !& t
2#. ~11!

The resulting synchrony parameter

x5 lim
N→`

DN

D
~12!

lies comprised between 0 and 1, and measures the degr
coherence of the system in the infinite size limit. In partic
lar, x51 if the system is totally synchronized@i.e., Vj (t)
5V(t) for all j # andx50 if the state of the system is asyn
chronous. This quantity can be evaluated independently
both populations, giving rise toxe for the excitatory neurons
andx i for the inhibitory ones.

Another important feature of the dynamical state is giv
by the possible existence of oscillations. It is important
stress that the question of oscillations is not independen



of

a
n
is
ce
th

th
st
os

s
fir

in
th
-
.

a
at
t-
a
r

of
rm
ili
is
ut
ilit

l-
ls
ea
sit

ow
m

for
tions
nt in
the

ns
tion
ct.
in

iate
nal
ack-

tio
ters
an
its

pu

t-
us

s:
the
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the synchrony. In an asynchronous state every neuron
large system receives an input that is constant in time~up to
corrections of order 1/AN). An IF neuron that receives
constant input can have only two possible states: quiesce
the input is below threshold or periodic oscillations if it
above threshold. Therefore a nonzero degree of coheren
necessary to observe nonoscillatory behavior. This is not
case for the model studied in@13#, where a neuron receiving
a constant input can display chaotic behavior. On the o
hand, when there is certain degree of coherence it is
possible to have oscillations, in particular, synchronized
cillations, besides the chaotic states.

The synchrony strength depends on all the parameter
the network~couplings, synaptic time constants, average
ing rates, dispersion of firing rates! in a complex way. One
case in which the relation is simpler is obtained by keep
all the parameters constant except for the dispersion of
firing ratesde and d i . In this case the synchrony is a mo
notonously decreasing function of the dispersions. In Fig
we show the signal-to-noise ratio as a function ofwnoise
for different values of the dispersion:de5d i523,22,21,
20,19 Hz. The strength of periodic signal was kept fixed
wsignal550 msec. We can see that the signal-to-noise r
is a decreasingfunction of the synchrony. Another interes
ing feature is the existence of multiple peaks in the sign
to-noise ratio. The existence of multiple peaks has been
ported previously@20#. They are due to the presence
correlations in the noisy part of the input. In order to confi
this point in the present case we evaluate the probab
density function of the network activity and generate a no
input with the same probability density function but witho
temporal correlations. In Fig. 2 we can see the probab
density function of the network activity forde5d i520 Hz
where the network activity at timet is defined byO(t)
5(1/Ne)( j PeOj (t,t1dt). Using this density function to
generate uncorrelated noise as input, the resulting signa
noise ratio is shown in Fig. 3. In the same figure we a
show the result of using Gaussian white noise with a m
value and a dispersion obtained from the probability den

FIG. 1. Signal-to-noise ratio as a function ofwnoise for de5d i

523,22,21,20,19 Hz~from top to bottom!. The value of the cou-
pling constants isFee511 msec, Fei510 msec, Fie511 msec,
andFii 510 msec. The average firing rate of the excitatory po
lation is approximately 54 Hz and the synchrony parameterxe takes
the values 0.104, 0.124, 0.132, 0.136, and 0.137.
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function of Fig. 2. Both instances of uncorrelated noise sh
a very similar behavior, and one which is very different fro
the noise generated by a network.

This result confirms the relevance of time correlations
stochastic resonance. In our case these temporal correla
are generated by a synchronized quasiperiodic compone
the network activity, as can be seen in one example of
autocorrelation function of the network activity@see Fig.
4~a!#. By analyzing different network sizes and simulatio
times, we have checked that the peaks in the autocorrela
function are neither a finite size effect nor a transient effe
The power spectrum of the target neuron activity is shown
Fig. 5~a! for the same set of parameters. We can apprec
how clearly coherent peaks with the frequency of the sig
and its harmonics emerge out of the broadband noise b
ground.

For different network parameters the signal-to-noise ra
can be improved. We have changed the coupling parame
Fab in order to find a state with less oscillations in the me
activity. In Fig. 6 we show the signal-to-noise ratio and

-

FIG. 2. Probability density function of the excitatory subne
work activity O. The couplings are the same as in the previo
figure and the disorder isde5d i520 Hz.

FIG. 3. Signal-to-noise ratio as a function ofwnoise. Squares:
noise generated by a network (de5d i520 Hz, Fee

511 msec, Fei510 msec, Fie511 msec, andFii 510 msec).
Crosses: white noise with the distribution of Fig. 2. Triangle
Gaussian white noise, with the mean value and dispersion of
probability density function of Fig. 2.
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comparison with noise generated with the probability den
function of the network activity but without temporal corr
lations and with white Gaussian noise. The autocorrelatio
shown in Fig. 4~b! and the power spectrum of the targ
neuron in Fig. 5~b!. Although the autocorrelation is not com
pletely flat it does not display such a strong long-term os
latory component as in the previous case. This flatter sp
trum generates a signal-to-noise ratio very similar to thos
white noise. It is important to note that it is not necessary
fine tune all of the couplings to obtain this result. A chan
in one of them can be compensated by a change of the
ers, as long as the modification is not too large~approxi-
mately 20%!.

In the simulations performed to obtain Figs. 1, 3, and
the firing rate of the target neuron is a monotonically incre
ing function of the noise strength,wnoise. In each case, its
maximum value was chosen in such a way that the firing
of the target neuron reached a maximum value of about
Hz. We found that the peak of the signal-to-noise ratio
reached for a firing rate of about 50–100 Hz~a similar value
was found for the most sensitive range for signal transd
tion in a different model@21#!. It is remarkable that the rat
of decay of the signal-to-noise ratio is quite slow, especia
in the case of Fig. 5, where in the whole range ofwnoise from
200 to 600 msec, the firing rates changes by a factor of 5

FIG. 4. Autocorrelation of the network activityO(t). ~a! de

5d i520 Hz, Fee511 msec,Fei510 msec,Fie511 msec, and
Fii 510 msec.~b! de5d i518 Hz, Fee520 msec,Fei522 msec,
Fie522 msec, andFii 522 msec.
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the signal-to-noise ratio decreases by less than 10%.
indicates that there is no need of fine tuning forwnoise.

IV. DISCUSSION

In this work we have analyzed the phenomenon of
when the noise is generated by a network of interconnec
IF neurons. Although we have not performed an exhaus
analysis of the network parameter space we can conc
that the temporal correlations of the output are a very imp
tant aspect of the dynamical state. This is demonstrated
the fact that using white noise with the same probabi
density function of the noise source but without tempo
correlations we obtain very different values of the signal-
noise ratio. Moreover, white noise eliminates multiple pea
in the signal-to-noise ratio as a function of noise intens
~see Fig. 3!. Multiple peaks have also been observed in@22#,
but in this case they are not generated by temporal corr
tions in the noise, but by a scaling relation in the dynami
equations. Note that in this case the peaks appear ev
separated when plotted as a function of the logarithm of
noise intensity, while in our case the signal-to-noise ratio
plotted on a linear scale of the noise intensity. The influen
of temporal correlations on SR has also been analyze

FIG. 5. Power spectrum of the target neuron activity. The pe
odic signal has a frequency of 40 Hz.~a! de5d i520 Hz, Fee

511 msec, Fei510 msec, Fie511 msec, and Fii 510 msec
~b! de5d i518 Hz, Fee520 msec,Fei522 msec,Fie522 msec,
andFii 522 msec.
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@23#. It was found that different sources of colored noi
gave rise to different behaviors. In overdamped syste
driven by colored noise SR is suppressed with increas
noise color. The opposite is found for colored noise induc

FIG. 6. Signal-to-noise ratio as a function ofwnoise. Squares:
noise generated by a network (de5d i518 Hz, Fee520 msec,Fei

522 msec,Fie522, msec, andFii 522 msec!. The average firing
rate and synchrony parameterx for the excitatory~inhibitory! popu-
lation are 28 Hz~40 Hz! and 0.07~0.04!. Crosses: white noise with
the distribution of output network activity corresponding to t
same parameters. Triangles: Gaussian white noise, with the m
value and dispersion of the probability density function of the c
responding output activity.
rc
og
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g
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by inertia, but it was never found the appearence of multi
peaks in the curve SR as a function of noise strength.

We have also observed that increasing the strength of
chrony by decreasing the dispersion of intrinsic frequenc
leads to a decreasing signal-to-noise ratio. The reason for
behavior is that as synchrony increases the output beco
concentrated during short time intervals. Inside these in
vals the noisy input is very strong and the output will be on
weakly correlated with the signal while outside the interv
the signal is unable to generate any output.

These results suggest that the network parameters ca
chosen in such a way that the detectability of weak signal
optimal. This will happen when the temporal correlations a
small and the synchrony is not too strong. We expect that
relation between the dynamical states and the stochastic r
nance must be qualitatively valid for models different fro
IF ~for instance conductance based models! because, as it
was shown in@20# in a simple case, the effect of the corr
lations in the noisy part of the input can be taken into a
count by using a probabilistic description of the system, t
is independent on the details of the dynamics.
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